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Abstract—Protein-peptide binding sites are crucial to our
understanding of several cellular processes. Due to the lack of
experimental data, especially information related to protein struc-
ture, this is a tricky problem to conquer. Recently, many machine
learning models have been developed to tackle this issue, but
have not performed very well without structural information. We
propose a deep learning based technique that takes only protein
sequence as input and predicts binding sites. We have leveraged
pretrained language models and undersampling techniques to
make the model more robust. We also proposed an attention
based mechanism to increase the explainability of the model.

Index Terms—protein, peptide, binding sites, data imbalance

I. INTRODUCTION

Proteins are large molecules or macromolecules that com-
prise one or more long chains of amino acid sequence.
Peptides are small(< 30) amino acid sequences. Protein-
peptide interaction plays a vital role in drug design as they
are involved in various cellular processes such as DNA repair,
replication, gene expression, and metabolism. In fact, 15-
20% of all protein—protein interactions are mediated by small
peptides [8]].Recently, new functional roles of protein—peptide
interaction were described and investigated. These interactions
were implicated in human diseases especially in cancers and
viral infections. Given the importance of this type of interac-
tion, it is essential to identify peptide binding sites in a protein.

Experimental data, especially solved structure, is scarce
for this problem. For this reason, modeling protein-peptide
binding sites computationally is very critical for achieving
molecular insight into how several cellular processes work.
But solving this problem has been far from simple. Although
billions of protein sequences are available now, there is a lack
of protein structure information available generally. Extracting
features from this sequence needs a lot of domain knowledge.
Another important obstacle is the class imbalance in the data.
Very few regions in the protein chain are actually peptide-
binding sites. This is a very big issue if any machine learning
model needs to be trained.

For solving the above mentioned issues, we propose a
robust machine learning model that tackles the issue of
feature extraction and data imbalance. We used ProtBERT
[4]], a language model pretrained on billions of amino acid
sequences. By using pretrained language model for feature
extraction we reduce our dependency on domain knowledge.

This also makes the model more robust, as we can find features
that are not yet discovered by the experts. Next, we used an
undersampling technique to solve the data imbalance problem
during training. Finally, we trained a deep learning model
comprised of both RNN and CNNs. The CNN model achieved
accuracy comparable to the state-of-the-art models.

So our contribution to this paper can be stated as follows:

o Using pretrained language model for feature extraction
that reduces the dependency on domain knowledge

o Undersampling techniques and class weights to solve
imbalanced data

o Using attention mechanism for increasing explainability
of the model

II. MOTIVATION

As was discussed in the Introduction section, identifying
protein-peptide binding sites remain a critical task for un-
derstanding several cellular processes. Roughly 10* human
proteins contain at least one peptide recognition module(PRM)
[2]. Like other protein—biomolecular interactions, peptides
bind in the conserved region of the target protein. In addition,
peptides use hydrogen bonds to form interactions with their
protein partner. The peptide-binding regions in proteins appear
to be dominated by large and flatter pockets. Although we have
this bit of domain knowledge about peptide binding sites, it
remains a challenging task. Because of small peptide size [12],
weak binding affinity [3] and peptide flexibility experimental
methods find it difficult to identify peptide binding sites.
So this remains an open problem. As a further matter, the
robustness and explainability of the current models are not
up to the mark. Despite all of these methods, none of the
models achieve remarkable accuracy(more precisely MCC).
Most of the recent methods take into account protein structure
information. So we propose a sequence only method that
can predict protein-peptide binding sites only from protein
sequences.

III. RELATED WORKS

Several dry lab methods have been proposed to identify
peptide binding sites. Direct docking of peptides onto protein
structures can predict binding residues by predicting pro-
tein—peptide complex structure. However, docking methods are
less feasible for docking typical peptides of lengths between
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5 and 10 residues onto proteins with unknown binding sites
because of the large search space for flexible peptide confor-
mation.

GalaxyPepDock [6]], on the other hand, builds peptide-
binding sites based on known docked structures by structural
similarity search. FoldX [9] attempts to infer peptide-binding
sites by employing interacting backbone fragment pairs. Due
to several limitations of docking based methods different
strategies have been developed to predict binding sites. Pepsite
employs spatial position specific scoring matrix (PSSM) de-
rived from known protein—peptide complex structures to locate
hot-spots on protein surfaces and determine binding sites based
on distance constraints. However, the above methods are lim-
ited due to their requirement of binding peptide sequences that
are not always known. To solve this problem, Peptimap maps
and clusters potential binding sites by docking small molecule
probes. Because of the limitations of above methods,Ghazaleh
Taherzadeh et al., proposed a sequence based method called
SPRINT [10]]. They also proposed a structure based method
in a later work, namely SPRINT-str . Another model
PepNN [[1]] was proposed, which is a deep attention model that
leverages transfer learning to compensate the scarcity of struc-
tural information. This study uses both only sequence based
and combination of sequence and structure based features.
However, PepNN needs both protein sequence and peptide
sequence to identify the binding sites. This is not an ideal
scenario for finding novel peptide binding sites. Because we
do not know the peptide sequence beforehand. Kozlovskii et

al., 5] propose a 3D convolutional model to predict peptide
binding site using protein structure as a 3D image.DELPHI
[7]] is a sequence based method but it predicts protein-protein
interaction which can not exclusively predict protien-peptide
binding sites. Most of the previous studies rely on Position
Specific Scoring Matrix(PSSM) and Hidden Markov Mod-
elstHMM) for feature extraction. But these techniques are
computationally expensive. Moreover, these techniques were
developed using a lot of domain knowledge. So any chance
of extracting features that we do not yet know is not possible.
Some recent studies have used language models to extract
information from protein sequences. For example, PepNN also
used the same language models for feature extractions. Most
studies have shown that these language models outperform
PSSM/HMM for feature extraction.

IV. METHODS
A. Dataset

The dataset used in this study is available publicly. This
dataset was released as part of the materials by the authors
of SPRINT-str. In total, the Train set contains 1116 no. of
protein chains and the Test set contains 125 protein chains. The
average length of each protein chain is around 476 residues.
But the longest chain contains 2835 amino acid residues. The
detailed distribution of Binding and Non-Binding Residues
in the dataset can be found in Table [l As we can see, the
dataset is pretty imbalanced. The number of negative samples
is around 16 times the number of positive samples. Also
because of the large size of the sequence high computational
resources are needed.

Bindin, Non-Bindin, .
Residuis Residues ® | PN Ratio
Train | 14959 251769 0.059
Test 1716 29154 0.0588
ABLET

DATASET: DISTRIBUTION OF BINDING AND NON-BINDING RESIDUES

There are some other available datasets related to this work.
We plan to explore them in the future. For now, all of the
studies conducted are on the above mentioned dataset.

B. Feature Extraction

A language model was used to extract features from protein
sequences only. ProtTrans is a collection of transformer based
models that are trained on protein sequences. These models
were trained on 493 billion amino acid residues. We used
ProtBert to extract features from the protein sequences. We
used an embedding size of 1024. So for each residue, the
model generates a 1024-size vector that is used as the in-
put feature. Previously other studies have found that using
language models instead of PSSM and HMM for feature
generation has two distinct advantages. More often than not,
results have improved. But the main advantage is the speed
of feature generation. ProtBert can generate features for the
whole dataset within 15-20 minutes, whereas PSSM may take
hours or even days to generate the similar quantity of features.



We use a sliding window for capturing the neighborhood
information. For each residue, we take a window of size 31(15
residues before the target one and 15 residues after it). The
features of all of these 31 residues are concatenated together
and this is used as the input features for predicting the target
residue. The beginning and ending part of the protein chain is
padded with zero vectors. In this way, we have also augmented
our dataset. Instead of having only 1116 sequences, we now
have around 266000 residues as a data point.
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C. Model

We wanted to capture both the neighboring information and
the long-term dependency among the residues. So we propose
an ensemble of a CNN and RNN model to capture both types
of information(Fig. @). For our initial study, only CNN model
was implemented. The plan was to create a CNN model with
state-of-the-art computer vision techniques. On the other hand,
we wanted to create a bidirectional LSTM model. The output
of both of these models can be fused together and passed on
to a fully connected layer to produce the output of the model.
The RNN model unfortunately was not producing desired
results. A simple CNN model was built that comprised three
convolutional layers. The output of the final layer was passed
on to a sigmoid activation function to produce the output.
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Fig. 4. Model Overview

D. Solving Data Imbalance

One of the main focuses of this study is to solve the data
imbalance problem. To solve that, we used undersampling in a
different way. If we only perform undersampling, we must lose
some information. So we created multiple subsets to reduce
the information loss as much as possible. Initially, we created

several subsets of the original dataset by taking only 20% of
the negative samples and all positive samples. Each subset now
has 1:3 positive-to-negative ratio. Now, we trained our model
on each of these subsets with a weighted binary cross entropy
loss function. Next, all of these separately trained models are
used to create an ensemble model that is trained on the whole
training dataset. The ensemble model only contained two fully
connected layers that takes input from the subset models.
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Fig. 5. Undersample and ensemble method

E. Training and Evaluation

We trained our models with different numbers of feature
channels and kernel sizes for the CNN model. We performed
experiments with and without the undersampling technique
discussed in the previous section. Weighted Binary Cross
Entropy(WBCE) loss was used for training the model. During
training, we used Dropout between convolutional layers, Early
Stopping and Learning Rate scheduling to avoid overfitting.
We used accuracy and Matthews correlation coefficient (MCC)
as our evaluation criteria.

E Data and Code

We used python language for implementation. PyTorch
framework was used for all deep learning based tasks. We
performed all our experiments on Google Colab. All the data
and code are available in the following Google Drive folder,

V. EXPERIMENTAL EVALUATION

We wanted to combine both CNN and RNN. But our
implementation of a bidirectional LSTM network performed
extremely poorly. So we had to only experiment with CNN
based models. We also did not use any structurul information
as structure information for most protein is not available as of
this moment.

A. Results from Previous Works

Some previous studies are compared in Table [l This
comparison was obtained from the authors of PepNN. In
this table, we can check how different methods have been
performed on the test dataset we are also using(TS125). These


https://drive.google.com/drive/folders/1YakE-XOM8PDDJwmvaFGDFEytuNn7prso?usp=share_link

Test dataset | Training dataset size | Model ROC AUC | MCC Under . o | Parameters Validation Test
PepNN-Struct 0.885 0.39 2" | Kernel Size | Feature Channels | F1 MCC | F1 MCC
956 PepNN-Seq 0.794 0.259 3 128 0.36 | 0.36 0.26 | 0.23
BiteNet 0.882 0.435 No 5 128 039 | 0.38 0.27 | 0.24
640 PepBind 0.793 0.372 5 512 0.38 | 0.38 028 | 0.24
TS125 1156 SPRINT-Str 0.78 0.29 Yes 5 512 0.37 | 0.36 0.27 | 0.24
1199 SPRINT-Seq 0.68 0.2 5 128 0.50 | 0.43 0.30 | 0.27
1004 Visual 0.73 0.17 TABLE IIT
- AlphaFold-Multimer | — 0.576 EFFECT OF HYPERPARAMETERS ON ACCURACY AND MCC
- AlphaFold-Gap - 0.44
TABLE 1T

COMPARISON AMONG PREVIOUS STUDIES

models are trained with a different number of sequences. Some
are only sequence-based models, others take into account both
sequence and structure-based information. We can see that
PepNN performs best in terms of ROC AUC and AlphaFold
Multimer performs best in terms of MCC. We have previously
discussed some limitations of PepNN. AlphaFold-Multimer is
a structure prediction tool that takes into account both protein
and peptide sequences. But we want to predict novel pep-
tide binding sites i.e., without knowing the peptide sequence
beforehand. Except for AlphaFold-Multimer all of the other
methods perform considerably poorly in terms of MCC.

B. Analysis on Extracted Features

The feature embedding size is pretty large. So we performed
PCA to visualize the data space. An example plot of a protein
is shown in Figure [6] The Yellow colored ones are the binding
residues. Apparently, only feature embeddings are not enough
to differentiate between Binding and Non-Binding residues.
But a very important thing was observed. Only the top 20
dimensions after the PCA analysis can capture 98% of the
variance. This points to a very good possibility of reducing
the feature dimensions without degrading the results.
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Fig. 6. PCA of a single protein sequence

C. Results

Results from our study are presented in Table This table
describes the results on different experimental settings. We can
see that the best performing model is the model with kernel
size = 5 and feature channels = 128. We can also see the
effect of our undersampling method on the results. Without

undersampling, using a weighted BCELoss function does not
perform as well. So our technique to solve the imbalanced
data problem has worked to some extent.

Although the results presented here may seem poor, if it is
compared with other sequence-only models mentioned in the
previous section, the results are comparable. Even the latest
model, PepNN-seq has an MCC Score of 0.26, which is similar
to our model. This observation also points to the fact that only
sequence related information may not be enough to solve this
problem. That is why we can see a significant jump in accuracy
and MCC, when structures are used.

As our LSTM model was not performing well, we could not
implement attention mechanism to increase the explainability
of the model.

VI. CONCLUSION

In this study, we proposed a deep learning based robust and
explainable model for predicting protein-peptide binding sites.
So far the results from only sequences have been promising.
One way forward can be using a structure prediction model
like AlphaFold to predict structure from the sequences and
then use that information to create a basic Graph Neural Net-
work(GNN). This will preserve the sequence-only nature of
our input but can learn from the structure related information.
We have trained and tested it on only one dataset. Three other
similar datasets can be obtained publicly. We plan to test our
model on them in the future.
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