Attention Based Host Intrusion Detection System

Irtesam Mahmud Khan
ID: 0421052039
Department of CSE, BUET
Dhaka, Bangladesh
irtesam.m.khan @ gmail.com

Abstract—With the development of deep learning, various
method have been adopted in Host Intrusion Detection System
or HIDS. However, the traditional methods of HIDS have been
proven to be vulnerable to higher number of false alarm. In this
study, we have proposed a novel hierarchical attention based
deep learning method of detection intrusion on a host. We have
evaluated our model on ADLF-LD, which is a collection of a trace
data of Linux system calls. We have tuned our model’s hyper
parameters to produce the optimum result, and our method has
successfully outperforms the existing methods.

Index Terms—HIDS, Attention, Neural Networks

I. INTRODUCTION

The host-based intrusion detection system (HIDS) has been
gaining attention in the community of cybersecurity for over
two decades. Compared with the network-based intrusion
detection system (NIDS), HIDS has the superiorities of fine
granularity and the ability to detect internal attacks. HIDS
analyzes auditing data from operating systems, whereas NIDS
analyzes data from network traffic. System-call-based HIDS is
about analyzing collected Linux system call traces [[10]]. HIDS
monitors activities such as system or shell logs within hosts
to discover unauthorized behaviors. HIDS can perform various
kinds of data mining methods such as artificial neural networks
on host auditing data to discover attacks. In Unix like operating
systems, system calls are referred when a kernel service from
the operating system is requested by a running process. System
calls are significant interactions between programs and the
system kernel. System-call-based HIDS has gained attention
in the past 20 years because of the increasing number of
attacks focusing on Linux servers. System-call based HIDS
has been developed for intrusion detection in virtual hosts and
embedded platforms such as smartphones [[10]]. A system-call
based HIDS monitors real-time system call traces to detect
abnormal system call sequences. System-call based HIDS can
trigger alarms when abnormal system call traces are detected
from normal traces. By using system calls as the input data,
an HIDS can manipulate the most original information of an
operating system [10]. Analyzing system-call traces which
is invoked by the running programs to discriminate normal
and abnormal behaviors was first introduced by Forrest et
al. [7], [11]. Due to the complexity and diversity of user
behavior, the previous abnormal intrusion detection method
for constructing normal behavior patterns is very unstable.
Then in their subsequent works, they defined normal profile
using short sequences of system calls [[11]]. Kim et al. [§]]

proposed an ensemble method combining a number of LSTM
classifiers to detect malicious system call sequences. Chawla
et al. [3]] proposed a combined architecture of CNN and RNN
with pretraining of the CNN layer to reduce the training time
significantly. Shaohua et al. [I1] introduced a sequence to
sequence model to predict future system calls and used the
generated sequences to detect attack sequences. Diep et al.
[6] proposed a combination of multi-channel CNN and LSTM
which can predict attack sequences with remarkable precision.
Shuaichuang et al. [13] proposed an attention-LSTM model
which enables them to give varying weights to the system
calls based on their relative importance for predicting correctly
the label of the sequence. Recent advancement in attention
mechanism has improved the performance of NLP models
significantly. But we see very few efforts made to tackle the
problem of HIDS by using the attention mechanism. Attention
enables us to apply different weights to different inputs at
each time step for predicting outputs. Our objective of this
work is to propose a hierarchical attention based GRU model
that can efficiently detect attack system calls based on the
relative importance of the system calls. We have splitted the
system call sequences into sentences and applied attention
firstly on the system calls, secondly on the sentences to extract
their relative importance with regard to predicting the label of
the sequence. Results show that our method can efficiently
detect the attack system calls and at the same time, does not
generate too may false positives. Our proposed approach will
help detect malicious system calls in the host machine. Before
that, a dataset must be provided containing the possible attacks
and normal sequences that occur in the host machine. Getting
trained on that dataset, our approach will be able to detect
any upcoming attacks and warn the owner accordingly. The
unique features of our study are:

o Applying a new method Hierarchical Attention to detect
intrusion

e Training the model on benchmark dataset for comparison
with other existing methods

o Using Attention mechanism for increasing explainability

II. BACKGROUND

In this section first we describe a brief technical overview of
host intrusion detection systems and associated methods. After
that, we describe some related works with their limitations.
Finally, we give a overview of how we plan the remedy of
those limitations and hence derive the novelty of our work.

A. Technical Background

In this subsection, first, we define the anomaly based host
intrusion detection system and after that, we go through a
brief overview of various deep learning networks that are
widely used in detection intrusion in host based system. The
following subsection describes some relevant existing works
on host intrusion detection and analyze their limitations and
our plan to resolve them.

1) Anomaly based Host Intrusion Detection (HIDS) An

2)

3)

Intrusion Detection System (IDS) refers to hard-
ware/software platform to monitor activities to detect
malicious signs. There can be two types of IDS: 1) Host
based IDS (HIDS) and ii) Network based IDS (NIDS).
An anomaly based HIDS is an intrusion detection system
which detects any kind of computer intrusions and mis-
use by monitoring the execution activity of the system
and classifying them as either normal or anomalous.
There are multiple approaches of detecting anomalies
and the most recent and widely adopted approach is
to use a deep learning based techniques and train the
system to with pre-labeled normal and anomalous ac-
tivities so that it can classify any forthcoming system
activity. The upcoming portion of the subsection the
deep learning techniques that have been used in the state-
of-the-art HIDS models.

Recurrent Neural Networks(RNN): Recurrent neural net-
works, also known as RNNs, are a class of neural
networks that allow previous outputs to be used as
inputs while having hidden states. The typical struc-
ture of RNN is shown in Figure [I] In order to use
system call sequence to detect anomalies, RNN needs
to be trained with the training dataset. Each system
call can be considered as a word and a system call
sequence can be considered as a sentence. In this way,
the intrusion detection problem can be solved through
the techniques of Natural Language Processing (NLP)
and RNNs can be a very good candidate in this regards
since it can process the input keeping the model size
constant Computation and most importantly, it takes into
account historical information which is mandatory for
NLP.

Fig. 1. Architecture of a typical RNN

LSTM and GRU: RNNs suffer from short term memory.
If the input is too long, gradient values vanish during
back propagation and as a result update of weights

forget gate

LST™M GRU

cell state reset gate

sigmoid

4)

input gate output gate

® o 8 0 r

tanh

update gate

pointwise pointwise vector

Fig. 2. Architecture of LSTM and GRU

becomes insignificant. This is called Vanishing gradient
problem. To overcome this issue, LSTM was created as
a solution. In Fig. [2] architecture of an LSTM is shown.
We can see that an LSTM has three types of gates. Their
details are described as follows.

a) Forget Gate This gate decides which information
to throw away or kept. This gate is responsible for
carrying important information from past states and
pass it to the next states.

b) Imput Gate This gate takes the current input and
previous hidden state as input and decides what
information to be kept.

c¢) Output Gate This gate decidese what the next
hidden state should be based on the current input
and previous hidden states.

The architecture of GRU is shown in Fig. It is a
simpler version of LSTM. It gets rid of cell states and
uses hidden states to pass information. It has only two
gates.

a) Update Gate It acts similar to the forget and input
gates of an LSTM. It decides what information to
throw away and what new information to add.

b) Reset Gate It is another gate to decide how much
past information to forget.

Attention Mechanism The attention mechanism emerged
as an improvement over the encoder decoder-based
neural machine translation system in natural language
processing (NLP). Bahdanau et al. [1] proposed the
first attention model in 2015. Before that, LSTMs/GRUs
were being used in encoder-decoder models but their
performance were not satisfactory when input sentences
were large. Also, another problem was that there was
no way to give more importance to some of the input
words than others while translating the sentence. Fig.
[] demostrates the attention mechanism proposed by
Bahdanau et al. [|1]]. In their work, they used bidirectional
LSTM layer, that is why we see two sets of hidden
states, one for the forward direction and the other for

el
A

Fig. 3. First Attention Model

the backward direction. All the hidden states are used
to compute a context vector which is then used to predict
the output at current time step. Each hidden state is given
a weight which represents the relative importance of that
input for predicting the current output.

Hierarchical attention was first proposed by Yang et al.
[14]. Their proposed model is demonstrated in Fig.]
At first phase, words are fed into a bidirectional GRU
layer and the outputs of the GRU layer are fed into
an attention layer to compute the relative importance of
words inside a sentence. At the second phase, sentences
are fed into another bidirectional GRU layer, and the
outputs of the GRU layer is are fed into another attention
layer. This layer gives us the relative importance of each
of the sentence of a document which is dependent on
the importances of the words of that sentence computed
in the first phase.

B. Existing Works

With the current popularity of deep learning, there have
been a good number of deep learning based host intrusion
detection systems. The performance of any deep learning
based model largely depends on the availability of suitable
datasets. During decade of 1990, Knowledge Discovery in
Databases (KDDCup1999, KDDCup98) were largely used in
the evaluation of any intusion detection system. However, in
2013, Creech et al. [4] claimed that these datasets currently
sufficiently represent relevant architecture or contemporary
attack protocols, and therefore, evaluating any intrusion detec-
tion system using these datasets does not provide an effective
performance metric, and contributes to erroneous efficacy

softmax

S sentence
L attention

ar”

v
[
l . :
! C o= sentence
encoder

ST e word
aor attention

1 i) | kLT |
! 1 ! 1 1
[]+ 7 I3 |
|]
! [i i
! . i ;

word
encoder

Fig. 4. Hierarchical Attention Model

claims. Creech et al. in his article, designed a new contem-
porary dataset for evaluating host based intrusion detection
systems, and his ADFA Linux Data (ADFA-LD) [5] is mainly
a collection of Linux system call sequences of both normal
and malicious categories. Kim et al. [8]] proposed a system
call language-modeling approach for designing an anomaly
based host intrusion detection systems. They also designed
a novel ensemble method by blending multiple thresholding
classifiers into a single one in order to overcome the issue
of high false alarm rates which is very common in con-
ventional methods. There are some significant advantage of
such system-call language modeling such as it can learn the
semantic meaning and interactions of each system call that the
traditional methods cannot consider. For benchmarking, they
used both the ADLF-LD an KDD98 datasets. They changed
the LSTM layer parameters and designed three independent
language models; i) one layer with 200 cells, ii) one layer
with 400 cells, and iii) two layers with 400 cells. In their
experiment, the final one provided the best result. They further
improved the performance by using their ensemble method
(AUC 0.928) than that of the averaging (AUC 0.890) and
the voting (AUC 0.859) ensemble methods. But they did not
provide any detailed explanation about how they computed
their ROC curve, what their training set was and on which data
they computed their model’s performance. Chawla et al. [3]]
proposed an anomaly based intrusion detection system based
on a combined architecture of RNN and CNN. They used
Gated Recurrent Units (GRU) instead of the normal LSTM
networks and provided a reduced training time. For evaluating
their approach, they built five independent models; i) one layer
with 200 GRU units ii) one layer with 200 LSTM units iii) Six
layered 1D CNN with 200 GRU units iv) Seven layered 1D
CNN with 500 GRU units v) Eight layered 1D CNN with 600

Embedding

—Input Sentences——»

Layer

Y
Bidirectional
GRU
Y

. Attention
<—Word Attention
Layer

Fig. 5. Block Diagram of the word attention model

GRU units. They train each of the models with 833 training
sequences of ADLF-LD dataset. The final model provided the
best performance with AUC value of 0.81. Their significant
contribution was to reduce the training time. Their CNN-GRU
model needed only 10 training epochs to reach the conver-
gence while the LSTM model needed 100 epochs resulting
into even a lower AUC value of 0.74. Shaohua et al. [11]
introduced a sequence-to-sequence model using RNN. Their
prediction model predicts the upcoming system call sequence
and this sequence will be used to predict any attack. They
run their experiments on ADFA-LD dataset and demonstrated
convincing performance in anomaly prediction. They have
proved that that their model is very capable of predicting the
most likely system call sequence with a high accuracy. They
evaluated their predicted sequence using various classifiers:
CNNs, RNNs, SVM and Random Forest and they have gained
very promising AUC values varying between 0.91 to 0.95.
There has been a very recent work of Shuaichuang et al. [[13]]
where they have proposed an Attention-LSTM based network
intrusion detection system. The use of attention mechanism
has enabled them to pay attention to special features of the
data. They compared the performance of their model with
the conventional CNN and RNN and showed that their model
improves the accuracy and precision rate of network intrusion
detection but also decreases the false alarm rate. Diep et al.
[6]] proposed a combinational model of multichannel CNN and
bidirectinal LSTM to detect anomaly in host-based intrusion
detection systems. They performed 10- fold cross-validation
on ADFA-LD dataset and achieved an accuracy of 97

III. METHODS

In this section, we explain our approach towards detecting
malicious system call sequences.

A. Sytem Architecture

The model architecture is shown in Fig. [5 and Fig. [6]
Fig. 6 is our proposed model and it has a block named
Word Attention Model which is elaborated in Fig. 5] The
Word Attention Model in Fig. [5] takes sentences as input and
Embedding layer converts each word of the sentence into a
real-valued vector. These vectors are fed into the Bidirectional
GRU layer. Output of the GRU layer is given as input to the
attention layer which produces attention values of the words
inside the sentence.

Our proposed model in Fig. [6] takes system call sequences
as input and applies a Time Distributed layer on the input.
Time Distributed layer is a keras wrapper which allows Keras
to apply a layer to each temporal slice of an input. In our
case, the time distributed layer is allowing us to apply the
Word Attention Model to every sentence of any system call
sequence. After the Word Attention Model, we again apply bi-
directional GRU layer and attention layer. After that, a dense
layer with 1 neuron is placed which will give us the probability
of the system call sequence of being malicious.

Time
—— Distributed
Layer

System Call
" Sequences

v
Word
Attention
Model

A
Bidirectional
GRU

A

Dense Layer

v

Malicious Attention
~"or Benign? { Layer
Fig. 6. Model

B. Workflow

Fig.[/|demonstrates the flow chart of our proposed approach.
The details are described as follows.

Tokenizing Sytem Calls In the dataset that we are
using, the system calls are represented as integers. But
numbering doesn’t start from 1. Also, numbering is not
sequential. Tokenizing means to convert each number
into a sequential number starting from 1. This helps us

Report
Result on
Test Dataset

L Analyze
End Performance

: Setu
Tokenize P

Hyper
Sé/:st”em Parameter
HIS Value

No y
Divide System call

sequence into chunks of
sentences according to
MAX_SENT_LENGTH
parameter

A4

Split the benign and
attack system call

Train the
model

sequences into 60%
train, 20% validation and
20% test dataset

Fig. 7. Workflow

to efficiently prepare the input data that will be fed to
the model.

Tuning hyper parameters There are a number of hyper
parameters in our model. We have to set up their values
before starting the training phase.

Dividing each sequence into chunks of sentences As
we will be applying a hierarchical attention model on
the system call sequences where each sequence has a
label, these sequences need to be split into sentences
so that two level of attention layers can be applied on
them. To do that, we need to decide what should be the
number of words in each of the sentences. We call this
hyper parameter MAX SENT LENGTH, i.e., maximum
length of any sentence.

Splitting the dataset We split the dataset into 60%
training, 20% validation and 20% test dataset. While
splitting, we ensure to maintain the proportion of benign
and malicious system calls.

Training the model The model is trained with the
training dataset. The procedure is elaborated later.
Analyzing performance The trained model is used to
predict labels of system call sequences of the valida-
tion dataset. Hyper parameters are tuned based on the
performance and the whole process from Dividing each

sequence into chunks of sentences is repeated.
Reporting result on test set After obtaining a model
performing well in the validation dataset, this model is
used to predict labels of the instances in the test dataset
and its results are reported.

IV. RESULTS

We first describe different parts of the results and then show
the numeric values in this section.

A. Dataset

The effectiveness of any machine learning model signifi-
cantly depends on the availability of datasets. In general, the
more data we can provide to a machine learning model, the
more the model can learn the pattern of data and improve
performance. In case of intrusion detection system, it is highly
expected that the dataset should contain the contemporary
attacks so that the model can be more practical. All the
intrusion detection systems designed between 1990 and 2010
used the datasets from Knowledge Discovery in Databases
(KDD98 [9] KDD99 [12]]). However, with the introduction
of new novel attacks and also due to natural againg process,
these datasets have lost most of their relevance in intrusion
detection system. In 2013, Creech [4], [S] brought up the

limitations of KDD datasets and generated a new dataset called
ADFA-LD, mainly targetting the development of efficeint host
intrusion detection system. This ADFA-LD dataset contains
traces of system calls of Linux based operating system Ubuntu
11.04. The traces have been captured during the execution
of normal processes and also during the exposure to some
common known attacks. The ADFA-LD datast contains:

o 833 normal system call traces for training

e 4372 normal system call traces for validation

e 746 system call traces for six attack vectors. Table

Table [[shows the description of the attacks. The patterns of
the attacks of this ADFA-LD dataset is more aligned with the
modern day attacks, which makes it more consistent with the
actual network environment. Moreover, being a large scaled
dataset, it is more suitable to train a deep learning model
properly. For simplicity, we label the dataset into two different
classes: 1) We label the attack sequences as the Positive class,
and ii) The normal sequences as the Negative class. Table
shows how we split our dataset for training, validation and
testing.

B. Performance Metrics

Some terminologies related to performance metrics are
discussed below:

True Positives (TP) True positives are the cases when
the actual class of the data point was 1 (True) and the
predicted is also 1(True).
True Negatives (TN) True negatives are the cases when
the actual class of the data point was O (False) and the
predicted is also O (False).
False Positives (FP) False positives are the cases when
the actual class of the data point was O (False) and the
predicted is 1 (True).
False Negatives (FN)
False negatives are the cases when the actual class of the
data point was 1 (True) and the predicted is O (False).
We want the model to give 0 False Positives and O False
Negatives. But that is not the case in real life as any
model will not be 100% accurate most of the times.

Metrics to evaluate performance of any machine learning

model:

e Accuracy: Accuracy in classification problems is the
number of correct predictions made by the model over
all kinds predictions made. Accuracy is a good measure
when the target variable classes in the data are nearly

balanced.
Accuracy = TP+ TN
TP+TN+ FP+ FN
Precision = 7TP
TP+ FP

o Recall or Sensitivity: Recall is a measure that tells us
what proportion of samples that are actually positive have
been predicted by the algorithm as positive.

TP

Recall = ———
A T TPYFN

o Specificity: Specificity is a measure that tells us what
proportion of samples that are actually negative have been
predicted as negative. Specificity is the exact opposite of

Recall.
TN

TN+ FP

e« AUC - ROC Curve: AUC - ROC curve is a perfor-
mance measurement for classification problem at various
thresholds settings. ROC is a probability curve and AUC
represents the area under the ROC curve. It tells how
much model is sapable af distinguishing between classes.
Higher the AUC, better the model is at predicting O, as
Osand 1 sas1s.

Specificity =

TP
TPR = Recall/Sensitivity = —————
ecall/Sensitivity = 7

FP
FPR=1— Specificity — ————
PeCily = TN ¥ FP

Fig. |8| shows a sample ROC curve. In this figure, TPR

TPR

FPR

Fig. 8. Sample ROC curve

is on y-axis and FPR is on x-axis. The green curve
represents the TPR vs. FPR values of the model at
different thresholds. We assume that the model is giving
a probability value as output for each input. Threshold
denotes the value above which all probabilities are con-
sidered as positive and vice versa. An ideal model should
produce probability value O for all negative instances and
1 for all positive instances. Hence, the ROC curve of an
ideal model should be the red line in Fig. |8| and the area
under the ROC curve, i.e., AUC will be 1.

C. Hyper-parameters

There are a number of hyper-parameters in our approach.
These parameters are listed as follows.

1) MAX SENT_LENGTH: It denotes the number of system
calls in a sentence. In our hierarchical model, we are splitting
each system call sequence into several sentences according to
MAX_SENT_LENGTH and applying two layers of attention,

Payload/Effect Vector Traces Count
Password bruteforce FTP by Hydra 162
Password bruteforce SSH by Hydra 176
Add new superuser Client side poisoned executable 91

Java Based Meterpreter Tiki Wiki vulnerability exploit 124
Linux Meterpreter Payload Client side poisoned executable 75

C100 Webshell PHP Remote File Inclusion vulnerability 118

TABLE I
DETAIL DESCRIPTION OF SIX ATTACK VECTORS IN ADFA-LD DATASET
Type # of (+) samples | # of (—) samples | Percentage

Training 448 3122 60
Validation 149 1041 20
Test 149 1041 20

TABLE I
SPLITTING THE DATASET

first on the system calls, second on the sentences. As its value
increases, number of sentences from a sequence will decrease
and training time will decrease eventually. But second level
attention will become less effective.

2) Embedding Dimension: As we are using an embedding
layer inside the model, we need to set the embedding di-
mension. It denotes the dimension of the real-valued vector
that each system call is mapped onto. The more we increase
its value, model will be more able to generate representative
vector for each system call, but training time will increase
proportionally.

3) GRU_UNITS: As We are using Bi-directional GRU layer
in the model, we need to decide the number of GRU units in
the layer. Increasing number of GRU units may perform better
but with an overhead of extra training time.

4) Learning rate: It is a significant parameter. Large value
of learning rate means the model takes big jumps towards
minimum loss and as a result, it can diverge. Small value of
learning rate will result in slow training of the model.

We use cyclical learning rate policy to determine optimum
learning rate. We train the model in two phases. In the first
phase, the learning rate is increased exponentially per epoch
and loss at each epoch is recorded. These loss values are
plotted. In the second phase, we train the network with the
learning rate found in the first phase.

5) Batch Size: It denotes the number of instances to be
processed after which the network will update gradients via
back propagation with respect to the accumulated loss. Small
value of batch size will enable the network to learn more about
noisy instances, but frequent back propagation will increase
the training time significantly.

D. Training and Validation

We use Keras python library on top of Tensorflow. Before
training begins, we need to decide the number of epochs
to train the network. Higher number of epochs results in
overfitting of the model and lower number of epochs causes
underfitting of the model. To tackle this problem, we use
ModelCheckPoint from the Keras library. We define two
callbacks, one monitors the loss in validation set after each
epoch and saves the model whenever it sees a lower loss than
what it has already seen, another one monitors the accuracy in
validation set after each epoch and saves the model whenever
it sees an accuracy grater than what it has already seen. We
set number of epochs to 600 .

As there are less number of positive samples compared to
the number of negative samples, the dataset is imbalanced. If
this imbalance is not handled, the model will not be able to
learn to predict the minority class’s instances correctly. We use
a keras parameter named class_weight to tackle the imbalance
of the dataset. We set the value of class_weight to 7 .

We set batch size = 32 [2f, embedding dimension = 16,
GRU units = 32 initially and varied MAX_SENT_LENGTH
from 5 to 30 . The obtained results on validation set are listed
in Table [T

We then increase the batch size to 64 and do not alter
any other hyper-parameter’s values. The obtained results on
validation set are listed in Table [Vl

E. Testing our Model

We can observe from Tables IV and V that batch size = 64
has not degraded the performance but reduced training time
significantly. From Table V, we see the model is performing
satisfactorily with MAX_SENT_LENGTH 15. So, we
report the performance of the model on the test dataset in
Table [V

Positive Negative Training time
MAX_SENT_LENGTH | Accuracy | AUC predictive Sensitivity predictive Specificity F1 per

value value epoch
5 0.95 0.95 0.75 0.84 0.98 0.96 0.79 160 s
10 0.96 0.97 0.84 0.83 0.98 0.98 0.83 85 s
15 0.95 0.97 0.8 0.86 0.98 0.97 0.83 62 s
20 0.95 0.96 0.75 0.84 0.98 0.96 0.79 50 s
25 0.92 0.95 0.62 0.91 0.98 0.92 0.74 43 s
30 0.94 0.96 0.68 0.95 0.99 0.94 0.79 43 s

ABLE IIT

EXPERIMENTAL RESULTS WITH INITIAL VALUES OF HYPER PARAMETERS AND BATCH SIZE = 32

Positive Negative Training time
MAX_SENT_LENGTH | Accuracy | AUC predictive Sensitivity predictive Specificity Fl1 per

value value epoch
5 0.96 0.96 0.81 0.85 0.98 0.97 0.83 84's
10 0.94 0.96 0.7 0.91 0.99 0.94 0.79 47 s
15 0.96 0.97 0.8 0.89 0.98 0.97 0.84 34s
20 0.94 0.96 0.7 0.89 0.98 0.94 0.78 28 s
25 0.96 0.97 0.81 0.86 0.98 0.97 0.83 25's
30 0.91 0.95 0.59 0.9 0.98 0.91 0.71 22's

ABLE IV

EXPERIMENTAL RESULTS WITH INITIAL VALUES OF HYPER PARAMETERS AND BATCH SIZE = 64

COMPARATIVE ANALYSIS

Positive Negative
MAX_SENT_LENGTH | Accuracy | AUC predictive Sensitivity predictive Specificity F1
value value
15 0.94 0.96 0.74 0.84 0.98 0.96 0.79
TABLE V
EXPERIMENTAL RESULTS ON TEST SET
Positive Negative
Accuracy | AUC predictive Sensitivity predictive Specificity F1
value value
Kim et al. [8] - 0.928 - - - - -
Chawla et al. [3] - 0.81 - - - - -
Shaohua et al. [[11] - 0.95 - - - - -
Diep et al. [6] 0.97 - 0.97 - 0.97 0.97 0.97
This study 0.94 0.96 0.74 0.84 0.98 0.96 0.79
TABLE VI

We observe that performance of the model for the positive
class is comparatively worse. This is because of the fact that
positive class is the minority class and has only 12.5% of the
total number of samples. Hence, a few wrong predictions are
affecting the precision and recall greatly. From Table[V] we see
the positive predictive value and Sensitivity values are 0.74 and
0.84 respectively. It means the model is correctly predicting
125 positive samples among 149 positive samples in the test
set and it is giving false positive alarm for 44 samples.

FE. Comparative Analysis

Comparative results are shown in Table As we can see,
most existing works have reported the AUC value only. They
have usually provided the ROC curve and the AUC value as
an evaluation metric. Only Diep et al., provided values for
some other metrics. However, they have not provided AUC
score. However, we can see that our AUC score is better or

equal to all other methods. Most of these previous works have
not published their code. As a result this is not possible to
reproduce them to evaluate with our model.

We evaluate our model with the work of Shaohua et al.,
in Fig. 0] with respect to ROC curve. We can observe both
method has similar ROC curve.

V. CONCLUSION

In this study, we proposed a deep learning model based
HIDS. The results indicate our model outperforming some
other state of the art methods in terms of AUC. Although
most of the other models have not reported different evaluation
metrics. As a result, full comparison was not possible. We tried
to use another dataset, namely KDD98. But could not work
that out so far. In the future, we plan to introduce more ex-
plainability to the model. It already have better explainability
because of the Attention mechanism. We also want to test

084

064

TPR

0.4

024

001

00 02 04 0.6 08 10
FPR

Our Work

1.0 1

0.8

0.6

0.4

True Positive Rate

Q.2

0.0 4

Anomaly Detect Performance of Random Forest Classifier

e
|
|
—— Predict ROC (area = 0.95)
Label ROC (area = 0.96)
Extend ROC (area = 0.96)
0.0 0.2 0.4 0.6 0.8 10

False Positive Rate

Shaohua et al.

Fig. 9. Comparison between ROC curves

these on more datasets to understand how the model performs
there

[1

—

[2

—

[3

=

[4

[lnar)

[5

—

[6

=

[7

—

[8

=

[9

—

[10]

(1]

[12]

[13]

REFERENCES

Neural
arXiv

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
machine translation by jointly learning to align and translate.
preprint arXiv:1409.0473, 2014.

Yoshua Bengio. Practical recommendations for gradient-based training
of deep architectures. Neural Networks: Tricks of the Trade: Second
Edition, pages 437478, 2012.

Ashima Chawla, Brian Lee, Sheila Fallon, and Paul Jacob. Host based
intrusion detection system with combined cnn/rmn model. In ECML
PKDD 2018 Workshops: Nemesis 2018, UrbReas 2018, SoGood 2018,
IWAISe 2018, and Green Data Mining 2018, Dublin, Ireland, September
10-14, 2018, Proceedings 18, pages 149-158. Springer, 2019.

Gideon Creech and Jiankun Hu. Generation of a new ids test dataset:
Time to retire the kdd collection. In 2013 [EEE Wireless Communi-
cations and Networking Conference (WCNC), pages 4487-4492. 1IEEE,
2013.

Gideon Creech and Jiankun Hu. A semantic approach to host-based
intrusion detection systems using contiguousand discontiguous system
call patterns. IEEE Transactions on Computers, 63(4):807-819, 2013.
Nguyen Ngoc Diep, Nguyen Thi Thanh Thuy, and Pham Hoang Duy.
Combination of multi-channel cnn and bilstm for host-based intrusion
detection. Southeast Asian Journal of Sciences, 6(2):147-159, 2018.
Stephanie Forrest, Steven Hofmeyr, and Anil Somayaji. The evolution of
system-call monitoring. In 2008 Annual Computer Security Applications
Conference (ACSAC). IEEE, December 2008.

Gyuwan Kim, Hayoon Yi, Jangho Lee, Yunheung Paek, and Sungroh
Yoon. Lstm-based system-call language modeling and robust ensemble
method for designing host-based intrusion detection systems. arXiv
preprint arXiv:1611.01726, 2016.

Richard P Lippmann, David J Fried, Isaac Graf, Joshua W Haines,
Kristopher R Kendall, David McClung, Dan Weber, Seth E Webster,
Dan Wyschogrod, Robert K Cunningham, et al. Evaluating intrusion
detection systems: The 1998 darpa off-line intrusion detection evalua-
tion. In Proceedings DARPA Information Survivability Conference and
Exposition. DISCEX’00, volume 2, pages 12-26. IEEE, 2000.

Ming Liu, Zhi Xue, Xianghua Xu, Changmin Zhong, and Jinjun Chen.
Host-based intrusion detection system with system calls. ACM Comput-
ing Surveys, 51(5):1-36, November 2018.

Shaohua Lv, Jian Wang, Yinqgi Yang, and Jigiang Liu. Intrusion
prediction with system-call sequence-to-sequence model. IEEE Access,
6:71413-71421, 2018.

Atilla Ozgiir and Hamit Erdem. A review of kdd99 dataset usage in
intrusion detection and machine learning between 2010 and 2015. 2016.
Shuaichuang Yang, Minsheng Tan, Shiying Xia, and Fangju Liu. A
method of intrusion detection based on attention-LSTM neural network.
In Proceedings of the 2020 5th International Conference on Machine
Learning Technologies. ACM, June 2020.

[14]

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Ed-
uard Hovy. Hierarchical attention networks for document classification.
In Proceedings of the 2016 conference of the North American chapter
of the association for computational linguistics: human language tech-
nologies, pages 1480-1489, 2016.

	Introduction
	Background
	Technical Background
	Existing Works

	Methods
	Sytem Architecture
	Workflow

	Results
	Dataset
	Performance Metrics
	Hyper-parameters
	MAX SENT_LENGTH
	Embedding Dimension
	GRU_UNITS
	Learning rate
	Batch Size

	Training and Validation
	Testing our Model
	Comparative Analysis

	Conclusion
	References

