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ABSTRACT

Antibodies have become one of the most predominant class of drugs in modern days.

Around the world, at least 570 therapeutic monoclonal antibodies have been studied in clin-

ical trials by commercial companies, and 79 therapeutic monoclonal antibodies have been

approved by the United States Food and Drug Administration (US FDA). But a lot of the

candidate drugs fail at different stages of development. Some biophysical assays have been

proposed for screening candidates at the early stage of development. But this wet lab exper-

imnets are costly and time consuming. Instead several computational/theoretical tools have

been developed in the recent years. In this study, we have proposed a machine learning

based computational method to predict three important biophysical assays(AC-SINS,HIC

retention time and PSR) from antibody sequences only. We have used only the sequence

order information as features and used several machine learning techniques to reduce the

feature space and predict the target biophysical assay. Our model can predict this biophysi-

cal assays with surprisingly high degree of accuracy. The low computational expense and a

high accuracy makes our method very feasible for reducing cost of monoclonal antibodies

development.

viii



Chapter 1

Introduction

Antibody is one of the most important part of human immune system. Antibody(also known as
immunoglobulin) is the search and destroy unit of our immune system i.e. it detects any poten-
tially harmful foreign body(Antigen) and neutralize them. Many scientists have been trying to
produce antibodies that will attack specific antigens for some time. With the discovery of mon-
oclonal antibodies by Köhler and Milstein around three decades ago, this became a reality [2].
Monoclonal antibodies(mAbs) are a class of human synthesized antibodies that can target a
specific antigen. Over the last three decades, monoclonal antibodies have made a major trans-
formation from scientific tools to powerful human therapeutics [3]. The first antibody approved
by FDA was Muromonab in 1986 [4]. After that there was no looking back. Antibodies have
become one of the most predominant class of drugs in modern days. Recently developed anti-
bodies have a very few adverse side effect because of high degree of specificity. To overcome
immunogenicity risk, new technologies for the generation of predominately or entirely human
origin mAbs were developed [3]. Humira (Adalimumab) is the first fully human antibody ap-
proved in 2004, for the treatment of rheumatoid arthritis [5]. Currently, most mAbs developed
are humanized or fully human [6]. Around the world, at least 570 therapeutic mAbs have been
studied in clinical trials by commercial companies [7], and 79 therapeutic mAbs have been ap-
proved by the United States Food and Drug Administration (US FDA) and are currently on the
market [8]. The global therapeutic monoclonal antibody market was valued at approximately
US$115.2 billion in 2018 and was expected to generate revenue of $150 billion by the end of
2019 and $300 billion by 2025 [9]. Although antibody has become one of the most important
drug, there is still some issues related to the production of antibodies. 90% of candidate drugs
fail in different stage of clinical development [10]. But the underlying reasons of why these
candidates fail remains a mystery to some extent.

1



1.1. MOTIVATION 2

1.1 Motivation

Developability is an umbrella term that encompasses various drug-like properties, manufac-
turability and safety profiles of therapeutic antibodies. Immunogenicity, polyspecificity, high
viscosity, instability, self-association or poor expression are some of the many reasons that pre-
vents a candidate antibody to become a fully developed drug [11]. As many candidate drugs fail
in several phases of the development, the cost of monoclonal antibody production rises substan-
tially. Identifying candidate drugs that may not work out at the early stage of the development
can reduce the production cost significantly. Many methods have been proposed to identify the
developability issues at the early stage of clinical trials. Many high throughput developability
assays have been proposed for screening antibodies. But this methods need large number of
candidate samples to perform well. Generating candidates remain costly, so is performing these
biophysical assays.

Many computational/theoretical methods have been developed in recent times to solve the above
mentioned problems and reduce the overall cost of the development [12–15]. This methods have
used several techniques for predicting different developability risks. For example, Obrezanova

et al. has developed a tool to predict aggregation risk propensity from antibody sequences. But
very few works has been done on the prediction of biophysical assays(e.g. AC-SINS,HIC,PSR
etc) from the sequences. After the release of antibody dataset by Jain et al., many recent works
have been done on this sector [16]. Hebditch et al. has predicted biophysical properties from
sequences directly [17], but the result is not very accurate. Dzisoo et al. also developed an
online tool for predicting a subset of biophysical assays [18]. This work does not predict exact
values of the related assays rather try to classify if an antibody is developable in terms of that
assay. Another work by Jain et al. has predicted HIC from antibody sequences. But in this
work, they have leveraged 3-dimensional homology structure of the protein as well [19].

1.2 Our Work

The objective of our study is to predict values of some biophysical assays of monoclonal anti-
bodies directly from antibody sequences. An auxiliary objective is to analyse the impact of the
sequence order information to predict these biophysical assays.

In this study, we have predicted three biophysical assays(AC-SINS,HIC and PSR) directly from
heavy and light chain sequences of monoclonal antibodies. We have used the dataset provided
in [16] that includes information about 137 antibodies in later stage of clinical developments.
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1.3 Roadmap of the Thesis

In this chapter, we have provided a basic overview of the problem we are working on. Chapter 2
discusses the required preliminary information that is needed to understand this work. In Chap-
ter 3, we have discussed the data source and methods we have used for analysis and prediction.
Chapter 4 discusses the experimental results obtained from this study. Chapter 5 includes some
conclusive remarks about this study and future direction of this research,



Chapter 2

Background

2.1 Antibody

Antibody, also called immunoglobulin,is a protective protein produced by the immune system
in response to the presence of a foreign substance, called an antigen [1]. An antigen can be
any foreign body(virus,bacteria,other disease causing organisms and toxic substances) that is
harmful and alien to our body. If an antigen enters our body,human immune system can recog-
nize it as an alien substance. In response, immune system produces antibodies to neutralize the
threat. Some specialized white blood cells called B lymphocytes (or B cells) produce antibod-
ies.Antibodies attack antigens by binding to them.Some antigens(usually toxins) are neutralized
by only binding of the antibody and changing the chemical composition of the antigen.In some
other scenarios,the antibody binds the antigen and invites other antibodies to make the anti-
gen immobile.In another case,after the antibody gets attached to the antigen,a substance called
complement uses chemical reaction to destroy the antigen.

2.1.1 Structure of an Antibody

Although basic structure of all antibodies are similar,they can very a great deal in the region
that binds with the antigen.As shown in Figure 2.1,four polypeptide chains(two heavy and two
light) make a Y-shaped form to create an antibody. The structure of the tip of the ”Y” varies
greatly among different antibodies so that they can bind to different antigens.This region is
called Variable Region. This variable region is composed of 110-130 amino acid.The sequence
of this amino acids can potentially determine the functionalities of that particular antibody.On
the contrary,the base of the Y is called Constant region as they do not vary significantly among
different antibodies.This constant region determines how the antigen is neutralized.

4
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Figure 2.1: The Four Chain Structure of an antibody [1]

2.1.2 Types of Antibodies

Figure 2.2: The Five Isotypes of antibodies [1]

Human antibodies can be divided into five isotypes,namely IgM,IgD,IgG,IgA and IgE,based on
their constant region.Each isotype has distinct shapes,characteristics and functionalities.Each of
the isotype play a different role in our immune system.

IgG
IgG is the most abundant antibodies in human serum.IgG comprises of almost 70-75%
of all the antibodies in human body.IgG immunoglobulins are usual Y-shaped antibod-
ies.They are divided into four subclasses(IgG1, 2, 3, and 4).Though this subtypes have
almost 95% similarity in the constant region,they vary in the hinge regions.

IgM



2.2. BIO-PHYSICAL PROPERTIES OF ANTIBODY 6

IgM is the largest antibody and it arrives first after the initial recognition of the anti-
gen [20].Spleen is mainly responsible for the production of IgM antibodies in most mam-
mmals including humans.IgM comprises of the 10% of human antibodies.It has a penta-
metric structure and for this reason it has hogher avidity.

IgA

IgA accounts for 10-15% of human antibodies.This is found in nasal fluids,serum,saliva
etc.This antibody forms dimer after secretion.

IgE
IgE is found in a very small amount in human. They account for only 0.001% of the
human antibodies.

IgD
IgD comprises of 1% of the human antibodies.The functionality of IgD is a mystery from
the time of its discovery.

2.1.3 Therapeutic and Monoclonal Antibody

Therapeutic antibodies are specifically targeted antibodies that binds to the cell surface of the
targeted antigen.Therapeutic antibodies are used in fight for cancers and other diseases.Therapeutic
antibodies are most often Monoclonal Antibodies.Monoclonal Antibodies(mAbs) are human
synthesized antibodies that are produced by cloning a unique white blood cell.Monoclonal an-
tibodies usually have monovalent affinity, that is it binds to the same region(Epitope) of an anti-
gen.On the contrary,polyclonal antibodies can bind to multiple epitopes.Polyclonal antibodies

are also produced from different B-cells.Monoclonal antibodies are widely used as therapeutic
antibodies and they are very useful for biopharmaceuticals.

2.2 Bio-physical Properties of Antibody

Monoclonal antibodies are used in treatment of different diseases nowadays.However, the devel-
opment of mAbs with desirable properties remains quite challenging. Some desirable properties
can be (1)express well,(2)elicit a desirable biological effect upon binding and (3)remain soluble
and display low viscosity at high concentrations [21].While developing therapeutic antibodies
screening antibodies with only the desirable properties is a costly and complicated task.There
are some biophysical assays that can help in early stage screening of the antibodies.Some related
assays will be discussed in the current chapter.
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2.2.1 Affinity Capture Self-interaction Nanoparticle Spectroscopy (AC-
SINS)

This assay measures the degree of self-interaction of an antibody.A common challenge of pro-
ducing mAbs is preventing self-association.So a high throughput screening assay estimating
self-association early in the development process can save both money and effort.AC-SINS
is such an assay that can work with dilute solutions of mAbs available at the early stage of
development and assess self-association and aggregation.This assay uses gold nanoparticles
coated with anti-Fc antibodies. When a dilute solution of antibodies is added, they rapidly be-
come immobilised on the gold beads. If these antibodies subsequently attract one another, it
leads to shorter interatomic distances and longer absorption wavelengths that can be detected
by spectroscopy [21].Consequently this assay can assess the degree of self-association of the
monoclonal antibodies.

2.2.2 Hydrophobic Interaction Chromatography (HIC) Retention Time

The hydrophobicity of mAbs is another important biophysical property for their developabil-
ity into therapeutic antibodies. HIC retention time is used to measure the hydrophobicity of
the mAbs.This assay can also measure the heterogeneity of the mAbs.Monoclonal antibodies
are mixed with a polar phase and then washed over a hydrophobic column.Subsequently,UV
aborption and other techniques can be used to determine the degree of adhesion [22, 23].

2.2.3 Poly-Specificity Reagent (PSR) Binding Assay

Polyspecifity is a significant obstacle in the development of monoclonal antibodies.Poly-Specificity
Reagent (PSR) Binding Assay is a high-throughput method for examining the polyspecificity of
mAbs.This assay uses fluorescence-activated cell sorting (FACS), a type of flow cytometry.This
method tries to determine median fluorescence intensity - higher median intensity meaning
greater chance of more specific binding [24].

2.3 Machine Learning Algorithms

Machine learning (ML) is the study of computer algorithms that improve automatically through
experience [25].It is a method of data analysis that automates analytical model building. It is
a branch of artificial intelligence based on the idea that systems can learn from data, identify
patterns and make decisions with minimal human intervention.ML algorithms build a model
based on sample data, known as training data, in order to make predictions or decisions without
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being explicitly programmed to do so [26].There exist different types of ML approaches and
they are usually divided into three broad categories named as supervised learning, unsupervised
learning and reinforcement learning.In supervised learning, algorithms build a mathematical
model of a set of labeled data.It also analyzes the training data and learns a function which will
be used for new examples.Unsupervised learning algorithms take a set of data containing only
inputs, and find structure in the data.The structure of the data might be grouping,clustering or
something else.Reinforcement learning is concerned with how software agents take actions
in an environment so as to maximize desired reward.Also ML algorithms can be classified as
regression and classification. In this project,we have used some regression models for prediction
of biophysical properties of therapeutic antibodies.These algorithms are briefly described as
follows.

2.3.1 Linear Regression

Linear regression is a linear approach for modelling the relationship between dependent and
independent variables.If there is a single independent variable is called simple linear regression
and if more than one dependent variables, then it is called multiple linear regression.Actually,
simple linear regression is a special case of multiple linear regression.The basic model for mul-
tiple linear regression is

Y = β0 + β1X1 + β2X2 + β3X3 + ...+ βnXn (2.1)

where n is the number of features used to learn the hypothesis. Linear regression assumes
that the relationship between input and output is linear.It does not support anything else.It is a
parametric approach where initial assumption of the form of function is mostly unchangeable.It
also assumes that data are noiseless and it creates overfitting problem when highly correlated
input variables are used.So removing the most correlated variables leads to better result using
this model.

2.3.2 Lasso Regression

Lasso stands for Least Absolute Shrinkage and Selection Operator.It is a type of linear regres-
sion that uses shrinkage. Shrinkage is where data values are shrunk towards a central point as
the mean.In machine learning, Lasso is a regression analysis method that performs both variable
selection and regularization in order to enhance the prediction accuracy and interpretability of
the resulting statistical model.It is a regularization technique and is used over regression meth-
ods for a more accurate prediction.The lasso procedure encourages simple, sparse models.As it
performs L1 regularization, which adds a penalty equal to the absolute value of the magnitude
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of coefficients. This type of regularization can result in sparse models with few coefficients;
Some coefficients can become zero and eliminated from the model. Larger penalties result
in coefficient values closer to zero, which is the ideal for producing simpler models.As Lasso
shrinks the less important feature’s coefficient to zero thus, removing some feature altogether.
So, this works well for feature selection in case we have a huge number of features.

2.3.3 Random Forest Algorithm

Random forest(RF) is an ensemble learning method for classification, regression and other tasks
that operate by constructing a multitude of decision trees at training time and outputting the class
that is the mode of the classes (classification) or mean/average prediction (regression) of the
individual trees [27].Ensemble learning is a machine learning algorithm that combines multiple
base models in order to produce a powerful model .RF consists of a number of decision trees.
Every node in the decision trees is a condition on a single feature, designed to split the dataset
into two so that similar response values end up in the same set. The measure based on which the
(locally) optimal condition is chosen is called impurity. For classification, it is typically either
Gini impurity or information gain/entropy and for regression trees it is variance.For regression
this impurity is termed as node impurity.In this project, we try to reduce the feature space by
selecting potentially more important features.Features having a positive node impurity were
selected.

2.3.4 Support Vector Machine(SVM)

Support-Vector Machine (SVM) [28] is supervised learning model which is developed at AT&T
Bell Laboratories by Vladimir Vapnik. It is one of the most robust prediction method, being
based on statistical learning frameworks.The objective of SVM algorithm is to find a hyperplane
in an N -dimensional space that distinctly classifies the data points where N is the number of
features.Hyperplanes are decision boundaries that help classify the data points. Data points
falling on either side of the hyperplane can be attributed to different classes. Also, the dimension
of the hyperplane depends upon the number of features. If the number of input features is 2,
then the hyperplane is just a line. If the number of input features equals to/exceeds 3, then the
hyperplane becomes a two/more dimensional plane.

2.4 Literature Review

Therapeutic monoclonal antibodies have become an emerging part of the pharmaceutical indus-
tries.For the successful production of a therapeutic mAb,it is not enough that it only binds to the
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specific antigen.Rather it should also not suffer from developability issues - poor solubility,high
levels of self-aggregation etc [29, 30]. Screening problematic antibodies in the early stage of
development remains one of the important part of mAbs production. Several wet lab exper-
iments have been proposed to identify antibodies with poor developablity. For example,AC-
SINS [21],HIC [22] and PSR [24] are some high throughput assays to determine the developa-
bilty. But large number of candidates,which is both expensive and time consuming,is needed to
perform this experiments. Conducting the assay is also costly and the results need to be inter-
preted as well. Several techniques have been proposed to reduce the number of samples required
and increasing the througput [31, 32]. Several computational tools have also been developed to
predict protein aggregation [12–15]. This in silico tools have utilized several methods for pre-
diction from semi-empirical methods to sequence based approaches. Obrezanova et al. has
used statistical modeling and machine learning approaches linking the experimental aggrega-
tion data with physico-chemical parameters describing the amino acid sequences of antibodies.
The resulting model provides qualitative prediction of aggregation risk for antibodies (High or
Low risk of aggregation) using the primary sequence of antibodies as input [13]. Agrawal et al.

has used homology modeling from sequences to determine 3-dimensional structure and predict
spatial charge map that can predict high viscosity [33]. Lauer et al. has used a newly defined
term Developability index to predict aggregation propensity [12]. Raybould et al. has proposed
five computational developability guidelines for therapeutic antibody profiling [11].

Another computational approach is predicting biophysical assays quantitatively or qualitatively.
Several computational methods have been to predict hydrophobicity of antibodies [34]. Hanke

et al. has analysed the correlation between HIC retention time and surface properties [35]. A
recent work of Jain et al. predicts HIC retention time directly from sequences [19]. The recent
release of biophysical properties of antibody dataset by Jain et al. has a been very important
milestone for developing further theoretical tools [16]. This dataset is an excellent resource
as they have analysed 137 antibodies in advanced clinical stage of the development. Further
computational tools have already been developed based on this dataset. Hebditch et al. has
predicted biophysical properties from sequences directly [17]. Dzisoo et al. also developed an
online tool for predicting a subset of biophysical assays [18]. This work does not predict exact
values of the related assays rather try to classify if an antibody is developable in terms of that
assay.



Chapter 3

Materials and Methods

3.1 Materials

In order to create a robust machine learning model,a reliable training dataset is needed. In our
study, we have used the dataset collected by Jain et al. [16]. This is an excellent source of
information for therapeutic antibodies at later stage of clinical trials. This dataset includes 137
antibodies that have reached at least phase-2 of the clinical trials and had USAN or WHO In-
ternational Nonproprietary Names (INN) designations. 48 antibodies were built from variable
region sequences found in clinically approved antibodies (two of them approved so far only
outside the United States), 42 are in the phase-3 or phase-2/3 stage, and the remaining 47 are in
phase 2. A total of 124 have kappa light chains, and 13 are lambdas. 58 are classified as “fully
human” (with -UMAB suffix) and 67 as “humanized” (with –ZUMAB suffix), and 12 have at
least one “fully” nonhuman variable region(–XIMAB, –XIZUMAB, or –MONAB suffix).To
compare antibody variable domain properties within a common context the chosen set of 137
antibodies was expressed as human IgG1 isotype (allele *01) with standard constant regions for
kappa and lambda (alleles IGKC*01 and IGLC2*01,respectively) as appropriate.Each antibody
was then subjected to a battery of 12 different biophysical assays in common use for devel-
opability assessment. In summary, this dataset includes heavy and light chain variable region
sequences and 12 biophysical assay measurements of 137 antibodies. Among these 12 bio-
physical assays we have tried to predict 3 of them – AC-SINS(affinity-capture self-interaction
nanoparticle spectroscopy) [21],PSR (poly-specificity reagent) [24] and Hydrophobic Inter-
action Chromatography(HIC) [22].

11
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Figure 3.1: A complete Workflow Diagram
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3.2 Workflow

A overview of the complete workflow is presented in Figure 3.1. Initially we had variable
region sequences of heavy chain(VH) and light chain(VL) of each antibodies. We used three
feature extraction techniques, namely nGram,nGDip and PSF(details will be discussed in the
subsequent sections), to generate features separately from VH and VL. Next, we used random
forest algorithm to rank features in each of these individual feature space. This step is used to
reduce the feature space. Then we combined all of the individual feature space from VH and
VL into a combined feature space. Subsequently, this combined feature space was ranked with
SVM-RFE [36]. Finally, we used several machine learning techniques using several subsets of
the ranked feature space to predict the biophysical property. The same procedure is applied to
all three biophysical assays.

3.3 Feature Extraction and Selection

3.3.1 Feature Extraction

The input to our algorithms are heavy(VH) and light(VL) weight chain sequence of an antibody.
To capture the sequence order information, we have extracted position independent as well
as position specific features. Among the position independent features are dipeptides (Dip),
tripeptides,tetrapeptides and n-gappeddipeptides (nGDip). These features do not depend on any
specific position in the amino acid sequence.We describe each of these feature construction
techniques briefly in the following.

Amino Acid Composition
Amino acid composition (AAC) of a protein sequence refers to the normalized frequen-
cies of the 20 native amino acids. The frequencies are normalized by dividing each of
these by the protein sequence length.

Dipeptides (Dip)
Dipeptides (Dip) or dipeptide composition (DPC) features are the normalized frequency
of adjacent amino acids within the protein sequence. These features provide some sequence-
order information.

Tripeptides
Similarly, the normalized frequency of three consecutive amino acids can be used as
features. This is called tripeptides composition feature type.

Tetrapeptides
Again, the normalized frequency of four consecutive amino acids can be used as fea-
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tures. This is called tetrapeptides composition feature type. AAC, dipeptides and tripep-
tides,tetrapeptides – all these feature types can be generalized under the umbrella of n-

grams feature type, where frequencies of n-length peptides are used as feature vectors. In
our study we have extracted a total of 7003 n-gram features from VH sequence and 5146
n-gram features from VL sequence,for n=1,2,3,4.

N Gapped Dipeptides (nGDip)
The n-gapped-dipeptides (nGDip) features are extracted by counting the frequency of
amino acid dipeptides such that the amino acids are separated by n positions. The fre-
quency is normalized, dividing it by the total number of nGDip (i.e., L-n-1 for a se-
quence of length L). The nGDip feature extraction technique is motivated by the belief
that the gap between any two amino acids may carry significant information about the
protein [37]. We have considered up to 25 position gaps. In total,we have generated 9335
and 8773 nGDip features from VH and VL sequence respectively.

Position Specific N-grams (PSN)
The position specific n-grams (PSN) represent whether specific n-grams occur in specific
positions in the protein sequence. The value of each such feature in any sequence will
therefore be either 0 or 1 (on or off). We have considered n-grams for n = 1, 2 and 3 for
PSN.Total number of PSN features are 210 and 291 from VH and VL respectively.

3.3.2 Feature Selection and Ranking

The generated number of features from both VH and VL sequences is huge. It is infeasible to
train a machine learning model on such a huge number of features but with so few(137) data
points. So we needed to reduce the size of feature space. We have done it in two steps. In
first step we have got rid of the features with low importance. In the next step, we ranked the
remaining features.

Feature Reduction

To reduce the huge quantity of features we have leveraged a special property of Random For-

est(RF) algorithm. We have previously discussed about this algorithm in Chapter 2. Random

Forest can both be used as a classifier and regressor. As our problem is defined as a regression
problem, we have used Random Forest Regression in this study. RF regressor is basically the
ensemble of several decision trees. Every node in each decision tree divides the dataset based
on a certain feature. Which feature to use depends on a locally optimal condition node impurity.
In the case of regression, as in our case, variance is used as node impurity. Feature importance
is a term denoting how much each feature decreases the weighted impurity in a tree. For a
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forest, the mean decrease in impurity for each feature can be calculated and used as feature im-
portance. We calculated feature importance for each feature in an individual feature space(for
example n-Grams for AC-SINS, nGDip for HIc etc). Only features with a positive importance
scores were kept and other features were discarded.

After applying the above algorithm,feature space is reduced significantly.The number of fea-
tures in various feature space is shown in Tables 3.1,3.2 and 3.3.

nGram nGDip PSN
VH 613 844 29
VL 479 701 55

Table 3.1: Reduced Feature Space for AC-SINS

nGram nGDip PSN
VH 748 2418 68
VL 703 2171 115

Table 3.2: Reduced Feature Space for HIC

nGram nGDip PSN
VH 592 1719 84
VL 556 1539 113

Table 3.3: Reduced Feature Space for PSR

Feature Ranking

This reduced feature spaces were combined for each target variable(i.e AC-SINS,HIC and PSR).
All of this features were ranked using SVM-RFE [36]. This is a special feature ranking tech-
nique based on another algorithm Support Vector Machine [38]. SVM was first run on the entire
dataset using the procedure decribe in [36] and the 25 least ranked features were eliminated.
Then same procedure was repeated again recursively. This recursion was repeated again until
all the features are eliminated. Thus we can obtain a final ranking of the features that can be
used for further analysis.

3.4 Prediction

Now that we have reduced the feature space and ranked the remaining features we can use this
features to train machine learning models. We used several machine learning models such as
SVM, Random Forest, Linear Regression and Lasso Regression to predict the target variables.
To determine the required number of features needed to predict the target variable, we trained
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each of the model with different number of features(starting from very small number of features
and gradually increasing the number features based on the ranked feature space). As a testing
method we have used Jack-knife cross validation. Jack-knife cross validation is a method where
the prediction model is trained with N-1 training samples(total N training samples) and tested on
the left out sample. This procedure is repeated by leaving out each of the training samples. The
testing sample is different in each iteration, since a specific sample is left out each time. This
partitioning can be done in only one way. That is why the result of Jack-knife cross validation
is always unique. This is a strong advantage of this testing method compared to other k-fold

cross validation methods. The disadvantage of this technique is that it is comparatively slower.
This was not a big problem, as our dataset is not that large.

3.5 Evaluation Metrics

After we have performed Jack-knife cross validation, we need some metrics to compare dif-
ferent models. We have used the following metrics for evaluating different machine learning
models.

Mean Absolute Error(MAE)
Mean Absolute Error(MAE) is the average over absolute differences between prediction
and actual observations. This metric gives equal weight to all the individual points. This
metric does not consider the direction of the errors.

MAE = 1/n
n∑

i=1

|xi − x̄| (3.1)

Root Mean Square Error(RMSE)
Root Mean Square Error(RMSE) is the square root of the average of squared differences
between prediction and actual observation. RMSE also measures the average magnitude
of the error. RMSE gives relatively greater weight to the larger errrors. So if large errors
are undesirable RMSE can be a better measure compared to MAE.

RMSE = 1/n
n∑

i=1

(xi − x̄)2 (3.2)

R2 Value

R2 Value is the proportion of variance in the dependant variable that is predictable from
the independent variable. In layman terms, this is a statistical measure of how closely the
fitted line follows the trend of the observations. The value of R2 can be determined from
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the following equation.

R2 = 1−
∑n

i=1 |xi − x̂|∑n
i=1 |xi − x̄|

(3.3)

R2 has a value between 0 and 1, where 1 means the fitted line perfectly matches the obser-
vations and 0 means there is no correlation between the fitted line and the observations.

Adjusted R2 Value
R2 always increases with the increase of the independent variables, which can cause
overfitting. This issue is resolved in Adjusted R2. Adjusted R2 also determines how
much of the correlation is determined by the addition of another independent variable. In
this study, almost all of the R2 and Adjusted R2 values were same.

R2
adj = 1− (1−R2)(N − 1)

N − p− 1
(3.4)

where,
R2 = sample R2

N = number of samples
p = number of predictors



Chapter 4

Results

4.1 Experimental Results

We used Linear Regression, Support Vector Machine(SVM),Lasso Regression and Random
Forest as regression algorithms.And Mean Accuracy Error(MAE),Root Mean Square Error(RMSE),R-
Squared and Adjusted R-Squared were used as evaluation metrics.

Regressor Feature Size MAE RMSE R2 Adjusted R2

SVM 110 1.432 1.864 0.975 0.974
Random Forest 20 4.268 6.256 0.713 0.711
Linear Regression 60 1.952 2.507 0.947 0.941
Lasso Regression 50 1.884 2.344 0.949 0.948

Table 4.1: Best Results for AC-SINS

For AC-SINS, SVM provides best results for feature size 110. Similarly, the feature sizes are
20,60 and 50 for random forest,linear regression and lasso regression respectively. In Table-
4.1, we have shown only best results for these four classifiers. Clearly, SVM has outperformed
others. In Figure-4.1,we observe - with the increase of feature size, the performance met-
rics(MAE,RMSE) decrease for SVM and lasso regression.Again, R2 and adjusted R2 increase
with increasing of feature size. But random forest and linear regression perform poorly for
AC-SINS.

For HIC Retention time, Table-4.2 shows the best results for different performance metrics.SVM
outperforms others as usual but linear regression and random forest provide worse performance
than AC-SINS.

Here in Figure-4.2,we observe - with the increase of feature size, the performance metrics(MAE,RMSE)
are not decreasing smoothly for SVM and lasso regression. Also random forest and linear re-
gression perform poor as before.

18
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Figure 4.1: Effects of Feature Size on different performance metrics for AC-SINS

Regressor Feature Size MAE RMSE R2 Adjusted R2

SVM 90 0.306 0.439 0.957 0.957
Random Forest 110 0.886 1.881 0.194 0.188
Linear Regression 30 252.7 2088.6 0.732 0.730
Lasso Regression 30 0.539 1.0326 0.820 0.819

Table 4.2: Best Results for HIC Retention Time

Figure 4.2: Effects of Feature Size on different performance metrics for HIC Retention Time

For PSR SMP Score, Table-4.3 shows the best results for different performance metrics as
before. SVM outperforms others as usual and linear regression performs better than before. In
Figure-4.3,we observe that MAE and RMSE are decreasing smoothly and R2 and adjusted R2

are increasing for SVM and random forest with the increasing of feature size. Finally, we decide
that the overall performance of SVM is more promising for sequence based feature extraction
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Regressor Feature Size MAE RMSE R2 Adjusted R2

SVM 120 0.030 0.037 0.974 0.974
Random Forest 80 0.116 0.154 0.505 0.502
Linear Regression 70 0.041 0.056 0.925 0.924
Lasso Regression 30 0.073 0.098 0.802 0.801

Table 4.3: Best Results for PSR SMP Score

method.

Figure 4.3: Effects of Feature Size on different performance metrics for PSR SMP Score

4.2 Discussion

We have seen SVM outperforming all other regressors for every target variable. A point to
be noted is that best results of SVM were obtained by using linear kernel. We have also ex-
perimented with radial kernel, which have produced poor results. The best results were also
obtained on and around a feature size of 100(110,90 and 120). Overall our prediction models
predict pretty accurately. All the models trained with SVM with optimal feature size have a low
MAE and RMSE, on the other hand, have a very high R2 value(0.95-0.97). This indicates a
very good fit of the trained model.

Another important point to be mentioned, a general thought is that prediction accuracy should
increase as we include more features to the training model because the features are ranked
according to their importance. This is not true in general. More features does not always
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guarantee improvement in terms of accuracy. When AC-SINS and PSR were used as target
variable, other than linear regression, we have seen a general trend of reduction of RMSE as
feature size increases to a certain point(usually the optimal feature size). After that with the
increase of feature size RMSE has increased. This can be attributed to the fact that after a
certain point the increase of feature size tends to overfit the data. So the validation RMSE and
other metrics deteriorate.

A very crucial observation is the poor performance of linear regression. Also, as the feature size
increases upto a certain point linear regression seems to perform very poorly - RMSE seems to
explode. The underlying reason of this behaviour can be a small size of the dataset. As the fea-
ture size increases, given the number of data points are fixed, linear regression starts to perform
very poorly. Toverfihat is why lasso regression is also used. Lasso regression uses regulariza-
tion for not overfitting. This alleviates the problem we were facing with linear regression. That
is why we see a better performance from lasso regression as the feature size increases.

Random Forest(RF) has not performed well in any case. A notable issue of RF is poor per-
formance as regressor. Because RF does not predict precise continuous data prediction as is
required with regression. Also RF does not predict beyond the range of training data. This may
overfit the dataset. For all of these reasons RF seems not to perform at the level of SVM or
other regressors here.

There is an apparent anomaly in HIC retention time prediction with SVM. Because RMSE
and other metric does not seem to have a monotonic relationship with feature size. Rather
the correlation is a bit zigzagged unlike other target variables. This apparent anomaly can be
attributed to the fact that only sequence order information may not be enough for predicting HIC
retention time. Previous works have showed that this biophysical property can be correlated
to amino-acid or atomic propensities weighted by the surface areas obtained from protein 3-
dimensional structures [19]. As we have only used sequence order information as features the
model may have shown this non-monotonic relationship. However, our model with optimal
feature size still performs very well in this regard.



Chapter 5

Conclusion

Predicting developability of monoclonal antibodies have been a important issue in recent years.
Our proposed models has successfully predicted three biophysical assays from heavy and light
chain sequences of antibody. We have predicted specific values of each biophysical assays rather
than classifying which antibody may have a better developability in terms of these assays(as was
done in [18]). On the other hand, all of our models with optimal feature size has outperformed
the work done in [17]. The low computational expense and a high accuracy makes our method
very feasible for reducing cost of monoclonal antibodies development. There is also some
limitations to our work because we have only used sequence order information of the antibodies.
We have not considered the 3-dimensional structure of the protein, properties of the solution
etc. Also according to Hebditch et al., charge and hydrophobicity, calculated from amino acid
propensity, are very important in predictive models. As we have used these features, our result
can suffer from a certain degree of sensitivity. But we believe, overall the performance of our
model to be satisfactory. There is still plenty of improvement that can be done on this topic
in the future. A simple improvement can be taking the 3-dimensional structure of the protein
in account, We also want to predict the remaining other biophysical assays in the future as an
extension to the current research.
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Appendix A

Figures

As we saw earlier, among the four regressors- SVM preforms better than others.Here we include
result graphs of the comparison of actual and predicted data for SVM only.All these graphs show
that actual data and predicted results almost converge.

Figure A.1: Actual vs Predicted results for AC-SINS using SVM
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Figure A.2: Actual vs Predicted results for HIC Retention Time using SVM

Figure A.3: Actual vs Predicted results for PSR SMP Score using SVM



Appendix B

Codes

All the analysis was done using R version 3.6.1. We have leveraged several R packages for this
study. We have used two Windows 10 machine with Intel Core-i5 processor.

All of the codes used in this study can be found on the following github link :
https://github.com/rizvi23061998/cse400Thesis/
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